Recent Advances in Understanding Word-Level Reading Problems: Assessment and Highly Effective Intervention

Greater Rochester Association of School Psychologists November 1, 2019

David A. Kilpatrick, PhD State University of New York, College at Cortland kilpatrickd@cortland.edu

Today's Objectives

- 1 Understand "sight vocabulary" development & fluency
- 2 Understand why some students struggle
- 3 Learn the "elusive" research based reading interventions
- My real goal is to "whet your appetite" to embark on a course of self-study so you can become a "conduit" of empirical reading research to your schools.
- Dr. Larry Lewandowski's comment

Key Terms to Understand this Presentation

- Auditory vs. phonological
- Phonological vs. phonemic
- Orthography and orthographic
- Phonological awareness vs. phonics
- Decoding
 - Phonic decoding and word-level reading
- Sight word and sight word vocabulary
 - Also called orthographic lexicon

Important Note About Dyslexia

- Multiple definitions organizations and popular
- Researcher Definition:
 - Word-level reading difficulty despite adequate opportunity, effort (all else is popular lore that's been with us for over 100 years)
 - October 2017 boost from the chair of the UK Reading Panel
 - Common qualifiers in research studies: Not due to blindness, deafness, emotional disturbance, or low IQ

A problem translating research to practice: *Where do we draw the line?*

Another Important Note About Dyslexia

- Relationship to SLD in IDEA
- Relationship to IDEA in general
 - Cuts across many disability categories
- Via "operational definitions," researchers reserve the term "dyslexia" for those with normal intelligence
- The three types of reading difficulty
 - Dyslexia
 - Hyperlexia
 - General Poor Reader (or combined or GVPR)
- Poor word-level reading has the same cause regardless of IQ (aside from severe & profound intellectual disabilities)

The Phonological-Core Deficit of Dyslexia

- From the "most common cause" to the "universal cause"
- Weakness in one or more of the following:
 - Phonemic awareness/analysis
 - Phonemic blending/synthesis
 - Rapid automatized naming
 - Phonological working memory
 - Nonsense word reading, letter-sound knowledge acquisition
- Typically more than one of these, sometimes all
- Very well established with no substantive alternatives

Diagnosing a Reading Disability

The School Psychology Landscape as it Relates to Reading

Behavioral psychology camp

- Learning theory; task analysis, practice, & reinforcement
- Reluctant to acknowledge the mound of empirical research on WM, RAN, but will at least acknowledge PA
 - But they demonstrate no clear understanding of where it fits in
- Cognitive/IQ assessment camp
 - Patterns of strengths and weaknesses
 - Cross Battery Assessment
- Neuropsychology camp
 - Cool stuff but not much help for instruction/intervention
 - Some focus on the un-validated subtypes of dyslexia
- Broader reading research field camp
 - Virtually non-existent "camp" in the school psychology field

The School Psychology Landscape as it Relates to Reading

- Reading research in school psychology is self-generated
 - We are asked to evaluate students with reading problems
 - We are expected to make evidence-based recommendations
 - We apply familiar empirical endeavors to the problem
 - Learning theory, cognitive/intellectual info, neuropsychology
 - Most research in school psychology is unfunded & smaller scale

However . . .

- There is little or no awareness or interaction with the broader reading research field (the parallel empirical universe)
- All recommendations based on these conventional approaches yield 0-5 standard score point gains in reading, often lost at follow up
- The broader reading research has generated much better results!

FINDINGS FROM READING RESEARCH

WORD-LEVEL READING SKILL DEVELOPMENT AND WORD-LEVEL READING DIFFICULTIES

The Problem

- Reading problems
 - NAEP, behavior, self-esteem, graduation, college & career
- The gap between research and practice
 - Documented for general & special education teachers, teacher trainers, and school psychologists

Bigfoot and the Loch Ness Monster

- Claims about the gap between research and practice seem to stretch credulity
 - Millions of grants dollars are spent each year and nobody in our educational system knows about it!?
- Who's claiming that?
 - American Federation of Teachers
 - Journal of Learning Disabilities
 - U.S. Government
 - Society for the Scientific Study of Reading
- No one is to blame for this gap
 - We all do the best we can with what we know

The Largely "Untapped" Intervention Research

The little known origins of RTI (Part 2)

- TIER 1: Prevention research in 1980s-1990s
 - 50%-75% reduction in reading problems
 - (reviewed by the National Reading Panel, 2000)
- TIER 2: Vellutino, et al. (1996) *Journal of Educational Psychology*
 - Reduced RD kids down to 3% under 30th %ile & 1.5% under 16th %ile!
 - Results maintained 3 years later
- TIER 3: Torgesen et al., (2001) Journal of Learning Disabilities
 - Severely RD 3rd to 5th graders (average score = bottom 2%)
 - Average improvement was 14 SS points; then 18 points 2 years later
 - 40% discontinued from special educational reading support
 - Replicated with older students and adults
 - There is no 'statute of limitations' on reading improvement

Vellutino et al. (1996) Long TermeResults

The Little Known Origins of RTI

- Doesn't this all sound too good to be true?
 - RTI was designed to "capture" these amazing results
- However, the implementation focus has been on the
 - Universal screenings for RTI (finding at-risk students)
 - Structure of RTI (tiers, group sizes, session frequency/length)
 - Progress monitoring for RTI (determining degree of success)
 - Process of RTI (criteria for moving through the tiers)
 - Determining SLD via RTI (encouraged by IDEA 2004)
- The instructional approaches that produced these highly successful outcomes were lost in transition
 - Those highly successful intervention approaches will be covered later
 - Quick quiz question about your Tier 1 . . .

The Simple View of Reading

A Empirically Well Validated Framework for Assessment and Intervention

The Simple View

Reading Comprehension is the Product of:

Decoding and Linguistic Comprehension

 $RC = D \times LC$

The Simple View

Reading Comprehension is the Product of:

Word-Level Reading and Language Comprehension

 $RC = WLR \times LC$

Case Studies

- Steve Grade 6 (LD)
 - Decoding is at the late first grade level
 - Language Comprehension average (IQ = 106)
- Kevin Grade 7 (TBI?)
 - Decoding is at the beginning first grade level
 - Listening Comprehension is age appropriate

D = 0; LC = 1; Therefore $0 \times 1 = 0$

More Case Studies

- Andrea Grade 6 (SLI)
 - Decoding is at the 6th grade level
 - Language Comprehension is 1st grade level
- Erin Grade 5 (ID; Down's syndrome)
 - Decoding is on grade level
 - Listening comprehension is kindergarten level

D = 1; LC = 0; Therefore $1 \times 0 = 0$

The Simple View Challenge

- Find a skilled decoder with good language comprehension who struggles with reading comprehension
- Find a student with very weak decoding or weak language comprehension (or both) who is doing well in reading.
- What then, is Reading Comprehension?

Should We Teach Reading Comprehension Strategies?

Yes, because

- Research has shown the effectiveness of teaching reading comprehension strategies
- Language development involves oral and printed language - reading comprehension strategies apply to listening comprehension and vice versa
- But,
 - While reading comprehension strategies help all students, they have less impact on students with decoding problems
 - With these students, it won't close the "gap"

Reading Comprehension = D x LC

Decoding (Word-Level Reading) is based on:

- 1. Cipher Knowledge
 - Code vs. Cipher
 - 007
 - Kbnft Cpoe
- 2. Word Specific Knowledge
 - Regular and irregular words
 - Based to a large degree on cipher knowledge

Reading Comprehension = D x LC

Language Comprehension is based on:

- 1. Verbal IQ/Receptive Language
- 2. Background Knowledge
- 3. Executive Functioning Skills
- 4. Inferencing
- 5. Visual-Spatial/Imagery skills
- 6. Working Memory

Language Comprehension (LC)

- Less commonly the source of reading comprehension difficulties than decoding
- Research on LC related to reading comprehension is far behind research on decoding

– The nature and relationship of the LC components are less clear than with decoding

"Exceptions" to the Rule

- I' ve tested students with this pattern:
 - Good LC and "fluent" word reading
 - Yet poor reading comprehension!
- Does this contradict the Simple View?
- Yes but no . . .

These students had 1) good phonics, 2) poor phonemic awareness, and 3) poor working memory

- "Fluent" reading was very effortful for them
 - Little working memory capacity left for comprehension
- These students are "compensators"

Simple View of Reading (SVR)

- Explains the three well established RD subtypes
 - DYSLEXIA—Good language comprehension, poor word reading
 - Most LD struggling readers and many ED kids fit this pattern
 - HYPERLEXIA—Good word reading, poor language comprehension
 - Some kids with SLI, ID, and Autism fit this pattern
 - Often not detected until late elementary school
 - MIXED or COMBINED TYPE—Poor language comprehension, poor word reading
 - Most kids with SLI & ID, some LD, ED, Autism fit this pattern
 - (Compensator—Strong language skills, poor word reading)
 - Not as well studied as the other three
 - Typically high IQ with mildly dyslexic pattern
 - Reading skills average, far below potential, reading is a chore and they avoid it

Empirically Established Subtypes of Reading Difficulties Consistent with the Simple View

Word-Level Reading Skills

Strong

50

Weak

Language Skills Weak Stror	Typical Reader	Dyslexic (and Compensator)
	Hyperlexic	Mixed Reading Disability (GVPR)

Note that each of these subtypes (except compensator) has extensive research support

Decoding (Word-Level Reading)

Implications of this information

- These factors account for over 90% of the (practical) statistical variation among good and poor readers
- This suggests there are no mysterious factors affecting reading growth, including LD!
- These components provide direct and systematic guidance for our prevention and intervention efforts

The Simple View of Reading (SVR) and the Psychoeducational Assessment of Reading

First Step

Reading Comprehension is the product of: LANGUAGE COMPREHENSION and WORD-LEVEL READING

- The first diagnostic question of any student struggling in reading comprehension is:
- What if you read it to him or her?

THE SIMPLE VIEW OF READING (Originated by Philip Gough and colleagues and expanded by others. This expanded version by David Kilpatrick)

The Two Levels of Skilled Word Reading

Two Levels of Word-level Reading

1) The ability to sound out unfamiliar words

- Researchers call this *phonological recoding*, *decoding*, or applying *grapho-phonemic correspondences* (GPCs)
- Based primarily on letter-sound skills & phonemic blending
 - Also aided by knowledge of phonically regular patterns
- 2) The ability to remember words
 - Instant, *effortless* recognition
 - Unrelated to visual memory
 - Words are remembered via orthographic learning
 - Based on phonemic analysis skills and letter-sound skills

Word Reading Level 1: Accurately Sounding Out Unfamiliar Words

- All skilled readers of alphabetic writing systems *learn* this skill, whether we *teach* them or not
- Most weak readers do not naturally develop this skill
- Phonics instruction can reliably develop this skill if a student has sufficient basic phonological skills
- Promotes word memory in typical readers (Share's theory of orthographic learning) but not weak readers
- The term "phonics" is a lightening rod for controversy, yet is required for skilled reading
Word Reading Level 2: The Ability to *Efficiently* Remember Words

- Requires Level 1: Skill at sounding out new words
 - David Share's self-teaching hypothesis
- Letter-sound skills and phonemic skills also central
- Not addressed by any current reading approaches
 - Exposure only produces word memory for those already possessing word memory skills (i.e., good orthographic memory)
- Weak readers may become competent at Level 1 (sounding out words), but virtually *never* at Level 2 (efficiently remembering words)

Three Types of Learning Required for Word-Level Reading

- 1) Paired-Associate Learning (PAL)
- 2) Statistical Learning
- 3) Orthographic Mapping
- These are typically not distinguished from one another by teachers or researchers
- Each plays a different role in word-level reading acquisition
- Not acknowledging these different learning processes can negatively affect assessment and instruction

Paired-Associate Learning (PAL)

- Involves associating two things so that the presence of one activates the other
 - Language/labeling involves verbal PAL
- Foundational for learning letter names and sounds
 - Letter learning involves visual-phonological PAL
 - The visual half of that equation is not the problem
- *Not* the basis for written word learning
 - Yet many teaching methods seem to presume this
- Learning is explicit (i.e., conscious learning)
- Dozens to hundreds of exposures needed for accuracy-based mastery, hundreds to thousands for automaticity

Statistical Learning

- Involves deriving patterns from multiple incidences
- Statistical learning is generally implicit learning
- Skilled readers never taught the "six syllable types" learn them anyway via statistical learning
 - (e.g., *dack* vs. *dake* vs. *dar*)
 - Many other orthographic patterns learned this way
 - Source for build up of general orthographic knowledge
- Unclear how many learning "trials" are needed
 - It may vary depending on specific types of patterns
- Poor readers do not display efficient statistical learning when it comes to reading
 - Statistical learning is currently a "hot" area of study

Objective 3: The four classic approaches to teaching reading

The Four Classic Approaches to Teaching Reading And why they do not help weak readers

The Four Classic Reading Approaches

- Clear delineation between them based on the instruction's unit of focus
 - Teachers may sample strategies from multiple approaches
- They fall along a continuum of unit size
 - 1. Letters/graphemes phonics approach
 - 2. Word parts/rime units linguistic/word family approach
 - 3. Words whole word approach
 - 4. Sentences/paragraphs whole language/balanced literacy

The Four Classic Reading Approaches

- In every study I've seen, one has the best results
- In every study I've seen, one has the weakest results
- What they share in common
 - -None adequately addresses both levels of word-level reading

To understand highly effective prevention and intervention,

we need a

CRASH COURSE ON HOW WORDS ARE LEARNED

The Alphabetic Principle

- Chinese writing vs. alphabetic writing
- We do not write words!
 - We write sequences of characters designed to represent sequences of phonemes in spoken words
- Poor access to the phonemes makes reading alphabetic languages very difficult
- Phoneme skills are needed for BOTH sounding out new words AND remembering the words we read

National Reading Panel (2000) on the role of Phonemic Skills in Word Reading

(From Section 2 page 32)

Blending:

"The skill of blending is needed to decode unfamiliar words."

Segmenting:

"Phonemic segmentation helps children *remember* how to read and spell words . . ." (emphasis added)

Theories of Word-Level Reading

Fundamental assumption:

We all do the best we can with what we know

• My first 9 years as a school psychologist & first 4 years teaching courses in learning disabilities and educational psychology

A Common Misconception About Reading: "Children Learn to Read in Different Ways"

- This confuses *teaching* and *learning*
 - We teach things they don't learn; they learn things we don't teach!
- We TEACH reading in different ways; they LEARN to read *proficiently* in only one way
- Teaching is what we do—learning is what their brains do
- It's amazing there's even one way our brains read so efficiently
 - Perceive words in $1/20^{th}$ of a second
 - Read 150-250 words a minute
 - Have 30,000 to 70,000 words in our instant, orthographic lexicon
 - Add new words to that lexicon after 1 to 4 exposures
- There are not 2, 3 or 4 ways our brain is set up to do that!
- All skilled readers have the same basic skills
 - All skilled readers can read nonsense words, even if not taught phonics
 - All skilled readers have large and continuously expanding sight vocabularies

Theories of Word-Level Reading

1) Three-cueing systems approach

- Actually a theory about getting meaning from print
 - But has a lot to say about identifying words
- No real change since the 1960s despite over 45 years of research
- Central to whole language, balanced instruction, MSV, literacybased approach; the foundation for LLI & Reading Recovery

2) Visual Memory Hypothesis

- Classic whole word approach, flash card approach, repeated readings; even incorporated into the phonic approach
 - It's the phonic approach to irregular words and word memory

3) Phonics

- Also called a *code-based approach* and *structured literacy*
- Focuses on word identification, not word memory

The Three-Cueing Systems Approach

- This has been the dominant approach to reading for the last three decades
- This theory of reading was developed in the 1960s
- It has resisted any modifications based upon the thousands of scientific studies conducted since then
- It is continuously affirmed as valid despite extensive evidence to the contrary
- There is no evidence that it helps weaker readers catch up and and stay caught up
 - There is plenty of evidence that it does not
 - It is the most common "control group" instruction!

Poor Readers, not skilled readers read based on the "Three-Cueing Systems" Approach

Contextual

- Skilled readers recognize most of the words they read
 - Context is required for meaning, but not for recognizing familiar words
- Poor readers know fewer words so they *must* rely on context

Syntactic/Grammatical

 These skills are required for meaning, but are virtually uncorrelated with word-level reading

Grapho-phonic

- Refers to sampling letters, not sounding out words phonically
- Skilled readers effectively sound out unfamiliar words with help from context and set for variability (80%-90% accuracy rate)
 - In contrast to phonic decoding, guessing is ineffective (\leq 25% accuracy)

Sight Word Vocabulary is NOT Based on Visual Memory/Visual Skills

- Our intuitions fail us here
- Input and storage are not the same thing
 - Input is visual, storage is orthographic (via phonological)
- Cattell's findings in 1886
- Findings from the 1970s
 - Correlation between word reading & visual memory: zero to weak
- 1960s to 1980s miXeD cAsE sTuDiEs
 - Adams' comment about debating with students
 - Kevin reading Calvin & Hobbes
 - If a first grader learns "bear" he can instantly identify "BEAR"
 - Our "abstract representation" of every letter
 - Consider all the fonts and personal handwriting we read

Sight Word Vocabulary is NOT Based on Visual Memory/Visual Skills

- Word reading correlates strongly with phonological skills
 - *Phonological awareness & Word Reading: r* = .30 to .85;
 - Usually .5 to .7 depending on which PA test (more later)
 - Visual Memory & Word Reading: r = .1 to .2
- Note how we sometimes "block" on names of people and things (visual memory), but never written words
- Most students who are deaf struggle tremendously with word level reading
 - This should not be such a problem if word reading was based on visual memory

Sight Word Vocabulary is NOT Based on Visual Memory/Visual Skills

- Neuroimaging studies since the late 1990s show that
 - 1) phonic decoding;
 - 2) instant word recognition;
 - 3) memory for faces; and
 - 4) object naming are all processed in different areas/sub-systems of the brain! (Cattell's findings from 1886 now make sense)

Concerns About the Efficacy of Phonics

- Explicit and systematic phonics instruction displays superior results than whole word or whole language (three cueing, guided reading, balanced instruction)
 - This is true for all children but results "wash out" in the top half to two thirds of students by 3rd to 4th grade
 - Bottom third show ongoing benefit over time
- Too many, however, never "catch up"
- A small percentage cannot seem to learn via phonics
- No built-in mechanism or theory about fluency and building a sight vocabulary

Concerns About the Efficacy of Phonics

- Three levels of response to phonics based upon the severity of the phonological-core deficit
 - (And you know all these students!)

Level of Severity of the Phonological-Core Deficit

How Sight Vocabulary is Developed

An Introduction to Orthographic Mapping

The Science of Remembering Written Words

- Orthographic learning
 - How we remember the words we read
 - Instant effortless access to words
 - Building the orthographic lexicon
- Orthographic learning research
 - Computational/computer models
 - Multiple competing versions
 - Cognitive/behavioral models
 - Ehri's theory of sight word learning (orthographic mapping)
 - Share's theory of word learning (self-teaching hypothesis)

Orthographic Memory

 To understand orthographic memory, we must distinguish two aspects of word-level reading: Word Identification vs Word Recognition

David Share's Self-Teaching Hypothesis

- We teach ourselves most of the words we know
- Orthographic learning occurs one word at a time
- As students sound out new words, orthographic connections are formed
 - When newly encountered words are not sounded out, they are poorly remembered
 - Self teaching does not refer to "the code," but presumes you know the code and can use it reliably
- Orthographic learning is implicit it typically does not involve conscious thought or effort
- From 2nd grade on, typically developing readers remember words after only 1 to 4 exposures

Research on the Self-Teaching Hypothesis

- For typically developing readers, newly encountered words are permanently learned after only 1-4 exposures
 - Fits with the growth curves we normally see
- Common way to study Share's theory: the "Yait" paradigm
 - Grades 2+ engage in silent reading
 - New words are reading 1, 2, 4, 6, or 8 times
 - Tested after, 1-3 days, or a week
 - One study tested after a month
 - A recent poster presentation at SSSR tested a year later!

Word Identification vs. Word Recognition

- Unfamiliar words vs. familiar words
- Effort vs. effortless (irrepressible, pre-cognitive)
- Poor fluency vs. good fluency
- Phonic decoding vs. instant sight word recognition/orthographic memory
- Word identification tests typically confound these
- Classic phonic and whole language approaches focus on unfamiliar words & do not address recognition
 - Classic whole word focuses on recognition, but did not accurately represent how recognition occurs (visual memory hypothesis)

Linnea Ehri's Orthographic Mapping Theory

- Orthographic mapping is the mental process we use to store words for immediate, effortless retrieval.
- In other words, orthographic mapping is what we do to make an unfamiliar written word into an automatic "sight word."

Linnea Ehri's Orthographic Mapping Theory

- Sight words are highly familiar spellings (i.e., letter sequences), regardless of the visual look of the word
 - e.g., bear, BEAR, **Bear,** bear, **bear**, **BEAR**, bear, bear, BEAR
- Sight words are anchored in long-term memory (LTM) via a connection between something well established in LTM (the word's pronunciation) and the stimulus that needs to be learned (the letter sequence in the word's spelling)
- Phonemic segmentation skill* and letter-sound knowledge are central to this connection-forming process

*Segmentation *skill* is not the same as segmentation *task* performance (more later)

How Words are Learned for Instant, Effortless Retrieval

- Orthographic mapping requires:
 - Letter-sound proficiency
 - Phonemic proficiency (this goes well beyond what is tested on our universal screeners)
 - The ability to establish a relationship between sounds and letters unconsciously while reading

Combining Ehri's & Share's Theories

- Both are independently well-established via multiple empirical approaches and designs
- Both help make sense of literally thousands of existing studies on reading development and reading difficulties
- Both theories indicate that
 - Letter-sound skills and phonemic skills are central for written word memory (i.e., sight word acquisition)
 - Visual memory plays no discernable role in word-level reading beyond letter recognition and the input of letter strings
- First apparent attempt to integrate these theories was 2015
 Integrated version more powerful in explaining reading research findings than either alone

Common Misunderstandings About the Role of **Phoneme Skills in Reading**

- Thought to only relate do early learning of CVC words
- Not thought to be involved in sight word acquisition
- Not thought to be worth training after first grade
- Some still think it is not causal in reading only a byproduct of learning to read
 - (This is actually true! but only for the top 2/3rds of readers)

How We "Map" Words

Words that are "Opaque"

(i.e. words without a one-to-one correspondence)

 /m//ā//k/
 /r//ē//d/
 /c//ō//m/

 | | | |
 | | | |
 | | //

 make
 read
 comb

How We "Map" Words "Transparent" Words

(i.e. words with one-to-one correspondence)

What about irregular words?

- Irregular and opaque words take longer to learn
 - Only 1-2 extra exposures for typical readers; many more for RD
- Most irregular words are off by only one element
 - (*said, put, comb, island*; multiple violations are rare: *one, iron*)
- Irregular words not a challenge for orthographic mapping
 - "Exception words are only exceptional when someone tries to read them by applying a [phonic] decoding strategy. When they are learned as sight words, they are secured in memory by the same connections as regularly spelled words . . ." (Ehri, 2005 p. 171-172)

What about irregular words?

- Many regular words require mapping "adjustments" like irregular words
 - Silent e words, vowel digraphs, consonant digraphs are all opaque
 - Multisyllabic "regular" words with vowel reduction require mapping adjustment, much like irregular words (e.g., *holiday, market*)
- Irregular words are not the *cause* of reading problems in English
 - Even very regular orthographies (e.g., Italian, Spanish) have RD, and their RD is based upon poor orthographic mapping
 - It makes English phonic decoding harder to learn, but these irregularities are not the cause of poor sight word reading
 - Even regular words are poorly represented in the orthographic lexicons of poor readers
Effective Use of Flash Cards From the Perspective of Orthographic Mapping

- Introduce the word orally first
- Segment into phonemes verbally (no letters)
- Emphasize each phoneme
- Ask for letters associated with phonemes
- Build a "phonological framework"
 - Focus first on regular letter-sound connections
- Elaborate if possible
- Then work that word into a stack of flash cards

The Developmental Relationship Between Phonological Skills and Word-Level Reading

What about "orthographic skills"?

- Current discussion of "orthographic processing" in school psychology is 10 years behind the research
 - Classic case of "correlation does not determine causation"
- Orthographic "skills" result from orthographic mapping
 - Orthographic mapping maps words and word parts and patterns! (e.g., -ing, -tion, -ight)
 - Studies with consistent-irregular patterns (e.g., *nalk*)
 - My study using pseudo-rime units
 - (e.g., *mant, mank, menk*)

What about "orthographic skills"?

- Orthographic knowledge appears to be a byproduct of learning to read, not a causal skill like PA & LS skills
- Current ideas floating around about orthographic processing implicitly posit word learning based upon visual memory
- Intervention recommendations coming from such a notion have been shown to be ineffective

Are There Subtypes of Dyslexia?

- Acquired vs. Developmental Dyslexia
- Some acquired dyslexics showed one of three patterns
- Most showed mixture or alexia
- Helped prompt the *dual-route theory* of reading

The Dual Route Theory of Reading

- We read using one of two routes:
 - *Direct route:* Instant recognition of familiar words
 - *Phonological route:* sounding out unfamiliar words
- Ultimately, the direct route proposes that some words we know and some words we do not know
 - It is a description of skilled reading
 - It does not tell us how the direct route skill develops nor how the phonological route develops
 - Thus, it is not useful for instruction
- Useful for looking at the "finished product" from a neurological point of view

Are There Subtypes of Dyslexia?

- The subtyping model superimposes adult, neuropathology findings onto children with no history of neuropathology
 - Reminiscent of the MBD inferencing fallacy
 - Adults had become skilled readers, the children had not
- A 40 year search to establish such subtypes in the reading research literature has not yielded support
 - Primarily in the neuropsychology literature
 - This enterprise within neuropsychology does not seem abreast of the vast dyslexia literature outside neuropsychology, nor the intervention literature or orthographic learning literature
 - Heavy reliance on case studies, reading-age controls, and discrepancies between nonsense words and irregular words

Problems with the Methods of Study

- Case studies have many natural confounds
 - Example of an 85 year old "phonological dyslexic"
 - Parallel to the 11th grader I assessed & stories of magicians
- Reading-age matched control research method seems to create the phonological subtype
- Discrepancies between nonsense word reading and irregular word reading may represent a pattern, but it is a non sequitur to suggest it establishes neurologically-based subtypes

• Other, better explanations exist

Problems with Dyslexia Subtyping Based on the Dual-Route Theory

- Both subtypes show phoneme awareness problems
- Assumes "orthographic skills" are largely independent of phonological skills
 - Seems to assume a visual memory aspect to reading via the direct route
- Phenomena being described better accounted for by more recent theoretical developments
 - The phonological-core deficit hypothesis covers all the "symptoms" of dyslexia, when developmental considerations are accounted for

Problems with the Phonological vs. Surface Subtyping Scenario

- Subtypes are presented in the school psychology field as if they are well-established by research
- Instructional implications inconsistent with actual instructional/intervention research
 - Consider the article in Journal of Neuroscience (2015)

Are There Any Other Subtypes of Dyslexia?

- There are 3-4 subtypes of RD but not of dyslexia
 - Dyslexia, hyperlexia, combined, compensators (more below)
- A potential dyslexia subtyping scenario involves differential abilities in RAN vs. PA
- Three example subtypes
 - Problems in PA only
 - Problems in RAN only
 - Problems in PA and RAN (the "double deficit")
- Seemed more promising in the 1990s and early 2000s than it does today
- Verdict is still out

Should we even test for RAN? How about WM?

Why We Should Assess for Rapid Automatized Naming & Working Memory

Neither is well understood in terms of its role in reading development, *however . . .*

- Both moderately correlate with reading
 - Poor RAN and/or WM typically means poor word reading
 - But strong RAN & WM do not mean skilled word reading
- Both predict reading outcomes (good for screening)
- Both predict response to intervention
 - This has implications for assigning to Tier 2 or Tier 3
- Both appear to help explain reading difficulties
 - Especially if PA is okay

- Affects the interpretation of broader reading profile
- Provides evidence for SLD in reading
 - Both are symptoms of the phonological-core deficit of dyslexia
- Has implications for small group instruction

The Special Case of Compensators

- Commonly overlooked
- I "discovered" them either via a writing evaluation or a behavioral issue or a parent complaint about homework
 - Sometimes perceived as whiny parents
- Common pattern (from a study I did; n = 22)
 - 113.0 Verbal skills
 - 98.4 Reading comprehension
 - 92.3, 92.2 Word identification (timed and untimed)
 - 91.6 Spelling

- 93.7 Nonsense word reading (untimed)
- 84.4 Nonsense word reading (timed)
- 93.1 Phonemic awareness (untimed)
- 81.4 Phonemic awareness (timed)

The Special Case of Compensators

- It appears that they are being dragged down by limited
 - Letter-sound proficiency
 - Phonemic proficiency
- Detectable via the TOWRE-2 and the PAST
- Very correctable
- Best prevented via early detection and intervention

Objective 6: Understand the difference between phonemic tasks and phonemic skills

Phonemic *Tasks* vs. Phonemic *Skills*

- We need to move from a *task* mentality to a *skill* mentality
- Two types of phoneme tasks: *synthesis* and *analysis*
 - *Synthesis* goes from part to whole (e.g., blending)
 - *Analysis* goes from whole to part (e.g., segmenting)
- There are many phoneme *tasks* but only two *skills* are needed for reading
- Synthesis and analysis play different roles in reading:
 - Phoneme blending is needed for phonic decoding
 - Phoneme analysis is needed for remembering words

National Reading Panel (2000) on the role of Phonemic Skills in Word Reading

(From Section 2 page 32)

Blending:

"The skill of blending is needed to decode unfamiliar words."

Segmenting:

"Phonemic segmentation helps children *remember* how to read and spell words . . ." (emphasis added)

- The most common synthesis task is *blending*
- For blending, TASK = SKILL
- The blending *skill* needed for phonic decoding is directly captured by an oral blending *task*
- For analysis, there is no simple correspondence between task and skill
- Tasks include:
 - Rhyming
- Alliteration
- Segmentation
- Isolation
- Manipulation
 Categorization/Identification

• Note: There are two to six variants on each of these tasks

- Phoneme analysis all tasks are getting at an underlying phoneme analysis skill – not telling us separate things
 - Instant, effortless, and unconscious analysis/access to phonemes in oral pronunciations drives orthographic learning
 - This is *phoneme proficiency*
 - Why not "phoneme segmentation proficiency"?
 - Why also called "advanced phoneme awareness"?
- Ehri and the NRP quote simply refer to "segmentation," but they are describing a SKILL, not a task

- Two phoneme SKILLS needed for reading: 1) blending & 2) phoneme (analysis) proficiency
- Segmentation tasks cannot reliably assess the highly proficient segmentation/analysis skill needed for orthographic learning
 - It is a conscious task
 - Instant responses to manipulation tasks can assess proficiency
- Segmentation tasks correlate with reading .3 to .5
- Manipulation tasks correlate with reading .5 to .8

Objective 5: Understand the *Phonemic Proficiency Hypothesis*

The Phonemic Proficiency Hypothesis of Orthographic Learning

Current Evidence for The Phonemic Proficiency Hypothesis

Orthographic Learning Research

Integrating Ehri's & Share's theories logically demands this (separately they do not)

The Phonemic Proficiency Hypothesis

Dyslexia Research & Clinical Experience

In light of the orthographic learning research (i.e., exactly why is poor PA so disruptive to the development of a sight vocabulary)

The few correlational studies that directly examined proficiency emic cy sis Word Reading Intervention Research When considering the

Phonemic Awareness

Literature

When considering the approaches used measured against normative gains

Research Support for Phonemic Proficiency and Sight-Word Learning

Vaessen & Blomert (2010)

- 1400 students, grades 1–6, over 200 at each grade
- Phonemic manipulation accuracy and timing
- High frequency words and Low frequency words
 - Low frequency words estimate size of sight vocabulary
- PA accuracy and high frequency words, correlations dropped off quickly
- PA timing showed steep continued growth 1–5
- PA timing and sight vocabulary correlated .5 or higher right up to 6th grade
- Other studies showed timing provides a better index of the phonemic skills underlying reading

Research Support for Phonemic Proficiency and Sight-Word Learning

- Studies I've done
- 132 1st graders
 - Phonemic manipulation accuracy and timing
 - TOWRE-2 Sight Word Efficiency
 - Instant responses to PA and SWE = +.58
 - Accurate, non-instant responses = +.004
- 60 5th graders
 - Instant responses to PA and SWE also = +.58
 - Accurate, non-instant responses = -.25
- Similar result with 26 high school students
 - Nearly identical to 5th grade results

Sight Vocabulary and Reading Fluency

- Sight words are effortless & pre-cognitive—words "pop out"
- The elusive key to reading fluency is:

SIGHT VOCABULARY SIZE

- With a large sight vocabulary:
 - Most (or all) words "pop out"; reading is *fast* and *accurate*
- With a limited sight vocabulary:
 - Reading is effortful and often inaccurate because too many unfamiliar words require attention and strategic decoding
 - Poor fluency is NOT about speed of access to known words

The "Path" to Fluent Word Reading

- Word reading fluency is primarily based on the . . .
- Size of the sight vocabulary/orthographic lexicon, which is based on ...
- How skilled a student is in remembering words (orthographic mapping skills) combined with reading experience, and orthographic mapping is based on ...
- Letter-sound proficiency/automaticity (unconscious access to the sounds letters represent) AND
- Phonemic proficiency/automaticity (unconscious access to phonemes in spoken words)
- This latter skill is a universally missing element

(Develops in typical readers, but not in struggling readers)

PREVENTION AND INTERVENTION

The Basis for Intervention

"Any well-founded educational intervention must be based on a sound theory of the causes of a particular form of learning difficulty, which in turn must be based on an understanding of how a given skill is learned by typically developing children." *Snowling & Hulme (2011)*

Snowling, M. J., & Hulme, C. (2011). Evidence-based interventions for reading and language difficulties: Creating a virtuous circle. *British Journal of Educational Psychology, 81,* 1–23.

Caveat Emptor:

Determining Intervention Effectiveness

- Raw score improvements
- Statistical significance
 - Normally, "statistically significant gain" ≠ "closing the gap"
 - Many abstracts are misleading
 - "Significant" often means 3 standard score point gains
- Effect sizes
 - The most unsuspectingly misleading index of improvement
 - E.g., 0 SS improvement on national norms = 22 SS improvement?!
 - A <1 SS gain (.96) is nearly twice as effective as 22 SS gain (.53)
- Standard score gains
 - Some high profile intervention researchers recommended this
 - The only one to indicate if a student is closing the gap

Research-Based Principles vs. Research-Based Programs

- The problem with the term "research based"
- No Consumer Reports-style opportunity exists
 - What Works Clearinghouse, bestevidence.org, etc. have major problems
 - Use of effect size to determine efficacy
 - Very limited number of studies for any given program
- The National Reading Panel (NRP) avoided this by focusing on principles and approaches, not programs
- IES Practice Guides focus on principles and approaches
- There is no substitute for well-informed educational professionals
 - Analogy of carpenter and tools

Role of Socio-Economic Factors

- Socioeconomic Status (SES) is moderately correlated with reading outcomes
 - But correlation does not mean causation
- Effective instruction and intervention have been shown to be highly effective with low SES students
 - However, reading comprehension (RC) difficulties may continue
 - Yet word reading no longer compromises reading comprehension, so there are RC improvements
- Often blame is misplaced inadequate instructional philosophies and practices get conflated with low SES

English Language Learners

- Hundreds of studies with consistent findings
 - Findings support the Simple View of Reading
 - Word reading develops similarly to native speakers (in the absence of the phonological-core deficit)
 - Perhaps brief time lag, depending on age, previous reading acquisition, similarities across languages, etc.
 - PA transfers across languages
 - Comprehension lag (5-6 years) due to language development

Tier 1 Results

K-1 phonological Awareness Instruction

- Overall improvement in reading scores
- Average of 8 standard score point equivalent
 - Standard score point equivalent based upon effect sizes comparing groups, not national norms)
- Results did not always last after 1-2 year follow ups

HOWEVER . . .

- At-risk students averaged a gain of the equivalent of 13 standard scores!
- Gains increased to an average of 20 point equivalent at 6 month to 2 year follow ups!

I. Prevention of Word-Level Reading Difficulties

- ► Tier 1 instruction What is effective K–1?
 - KEY COMPONENTS
 - Phonological Awareness
 - Letter–Sound Knowledge
 - Connecting phonological awareness to word-level reading
 - Good teaching techniques based on general learning principles
 - Seems to be the focus of RTI efforts
- Early, rigorous development of PA and LS skills in K-1 dramatically reduces the number of struggling readers
- Quick Survey:

 How many of you work in schools that have a formalized, systematic, whole class, Tier 1 PA training in K-1?

Examples of Successful Prevention Programs

- Programs used in studies with highly successful outcomes
 - Experimenter designed not commercially available $\overline{\mathfrak{S}}$
 - Florida Center for Reading Research (pieces of these experimenter designed approaches) – all free! <u>www.fcrr.org</u>
 - *Road to the Code* (Benita Blachman et al.)
 - *Phonemic Awareness in Young Children* (Adams et al.)
 - Ladders to Literacy (O'Connor et al.)
 - Interactive Strategies Approach (Scanlon, et al.)
 - Other programs:
 - Rosner program long track record of success in schools
 - Equipped for Reading Success (studies underway; based on Rosner) www.equippedforreadingsuccess.com
- Most of these programs are effective for K-1 prevention & early intervention, but not for Gr. 2-12 remediation

• Other programs are more well suited for intervention (see below)
A Recent Finding about Intervention Research

- Numerous reviews of intervention research and metaanalyses have been conducted since 1999
- They routinely look at the obvious factors:
 - Socioeconomic Status (SES)
 - Age of students (e.g., 2nd graders vs. 5th graders vs. 9th graders)
 - Length of intervention (e.g., 35 hours? 65 hours? 110 hours?)
 - Group size (e.g., 1:1? 1:3? 1:5? 1:8? whole class?)
 - Severity of problem (2nd percentile? 10th? 20th? 30th?)
- Contrary to the expectations, the first two show small effects and the other three show no consistent effects
 - SES showed much impact with reading comprehension, however

The Significance of the "Big W"

- Numerous reviews of intervention research and metaanalyses have been conducted since 1999
- They routinely look at the obvious factors:
 - Socioeconomic Status (SES)
 - Age of students (e.g., 2nd graders vs. 5th graders vs. 9th graders)
 - Length of intervention (e.g., 35 hours? 65 hours? 110 hours?)
 - Group size (e.g., 1:1? 1:3? 1:5? 1:8? whole class?)
 - Severity of problem (2nd percentile? 10th? 20th? 30th?)
- Contrary to the expectations, the first two show small effects and the other three show no consistent effects
 - SES showed greater impact with reading comprehension, however

A Recent Finding about Intervention Research

- Using standard scores to determine effectiveness
- This results in three groups of intervention results
 - *Minimal results group:* 0 to 5 standard score improvements
 - Mostly 2–4 points
 - *Moderate results group:* 6 to 9 standard score improvements
 - Mostly 6–7 points
 - *Highly successful group:* 10 to 25 standard score point improvements
 - Mostly 14–17 points

A Recent Finding about Intervention Research

These three groups approached instruction differently!

- Minimal Group (0 5.85 SS improvements)
 - None formally trained phonological awareness/analysis
 - Most did explicit, systematic phonics
 - All provided reading practice with connected text
- Moderate Group (6–9 SS improvements)
 - All did explicit, systematic phonics
 - All provided reading practice
 - All trained phonological segmentation and/or blending
 - This is "basic phonological awareness" (mastered by most at end of 1st grade)
- Highly Successful Group (10–25 point improvements)
 - Aggressively addressed and "fixed" PA issues using advanced PA training
 - All did explicit, systematic phonics
 - All provided reading practice with connected text

Interventions We are Using Now (Why RTI is having limited results)

- The following interventions have been studied in the empirical reading literature and have been shown to yield 2 to 4 standard score point improvements:
 - Repeated Readings, READ 180, Reading Recovery, Fast ForWord, Read Naturally, Failure Free Reading, Seeing Stars, and Great Leaps
 - School psychologists recommend these not knowing they have already been studied and shown to have limited results
 - Students almost never "catch up" with these approaches
 - Most of these have studies with "statistically significant" results!
 - So they can all themselves "research based"!

Interventions We are Using Now (Why RTI is having limited results)

- "Gold Standard" phonic programs
 - (i.e., Wilson, DISTAR/Reading Mastery)
 - These can yield huge improvements in Word Attack (15-25 SS points), but modest improvements in general word identification (e.g., 3-5 SS points)
 - They do not develop phonological proficiency, which is needed for orthographic mapping/sight word development
 - Phonological-core deficit students only develop PA skills to the level that we teach them
- Also, reading comprehension interventions in the presence of significant word reading difficulties are minimally helpful

Examples of Successful Programs

- Programs used in studies with highly successful outcomes
 - Experimenter designed not commercially available $\overline{\mathfrak{S}}$
 - Lindamood (ADD now LiPS)
 - Be cautious about the one they are promoting now has limited results
 - Interactive Skills Program (now in book form)
 - PhonoGraphix
 - Read, Write, Type (only one study so far)
 - Discover Reading (Reading Foundation, Alberta, Canada)
 - Other programs using advanced PA training not in these studies:
 - Rosner program long track record of success in schools
 - Equipped for Reading Success (studies underway) is the only program based upon Orthographic Mapping-should have equivalent results to the others but is easier to implement (based on the Rosner program)
 - All studies with highly successful outcomes (12–25 groups) did "advanced" phonological awareness training!

The Phonological Awareness Screening Test (PAST)

The Phonological Awareness Screening Test (PAST)

- Not to be confused with another online test with the same acronym
 - "Phonological awareness Skills Test"
- Materials available
 - Data on reliability and validity
 - Tends to correlate with reading better than anything on the market (at worst, equal to what is on the market) yet it is free
 - Five alternate versions for progress monitoring
 - Detailed instructions on administration and scoring

The PAST Assessment

- Phonological Awareness Screening Test (PAST)
 - Acronym has double meaning
- Based on Rosner & Simon (1971)
 - Reworked and improved by McInnis
 - It is "third generation Rosner"
 - CTOPP Elision is "first cousin once removed"
- Outstanding correlation with reading
 - .6 to .8 elementary students; .5 adults

The PAST Assessment

- Based on phonological manipulation
 - Uses segmentation, isolation, & blending
- Also looks at automaticity of PA
- Provides feedback for every item
- Takes 6-10 minutes to give
- Keyed into remediation program
- Five versions for progress assessment
- Great supplement for CTOPP
- Requires some training
- Currently free to use
- Not normed criterion based

Administering the PAST

- Two scoring systems: timed, untimed
 - 0, 1, X
 - Timing
- Routing to speed administration
- Correction for each incorrect item
- Discontinuation rule
- Pacing
- Tabulation

Equipped for Reading Success

APPENDIX A

PHONOLOGICAL AWARENESS DEVELOPMENT CHART

Student progress chart for tracking progress

Student Name				-		Scho	ol Year or	Semester
					Deg	ree of	Proficiency	
SYL	LABLE	LEVEL PROCESSING		Multise	nsory St	age	Knowledge	Automatic
	Basic	Syllable Skills (Pre-K to first grade)*	S/S	VSp	VSeq	Aud.	Stage	Stage
	DI	Delete: (cow)boy -> cow						
	D2	Delete: (un)der > der						
	El	Delete: (pine)apple -> apple						
	E2	Delete: (de)liver -> liver						
	Adva	nced Syllable Skills (first to second grade and	older, s	truggli	ng read	lers)*		
	E3	Delete: (tri)angle -> angle						
	E4	Delate: (ap)imal > imal	-	-	-			

ONSET-RIME LEVEL PROCESSING (kindergarten to first grade and some older, struggling readers)*

F1	Delete: (c)at -> at	
F2	Delete: m(an) > m	
G1	Substitute: (n)ot -> (h)ot	
G2	Substitute: t(an) -> t(oy)	

PHONEME LEVEL PROCESSING

Delete: ele(phant) -> ele

E5

Basic Phoneme Skills (first to early second grade and older, struggling readers)*

H1	Delete: (p)lane -> lane
H2	Substitute: (c)lass > (g)lass
11	Delete: shee(p) -> she
12	Delete: car(t) -> car

Advanced Phoneme Skills (early second to early third and older, struggling readers)*

J	Substitute: t(e)ll -> t(a)ll
K1	Delete: b(l)and > band
K2	Substitute: s(k)ill -> s(p)ill
L1	Substitute: pc(t) -> pc(n)
L2	Substitute: sen(t) -> sen(d)
M1	Delete: ha(n)d -> had
M2	Substitute: li(f)t -> li(s)t

*Grade estimates represent when most students become competent in the respective skill. Individual rates of development will vary. Prepared by David A. Kilpatrick, Ph.D., February, 2007

Degree of Proficiency SYLLABLE LEVEL PROCESSING Multisensory Stage Knowledge Automatic Basic Syllable Skills (Pre-K to first grade)* S/S VSp VSeq Aud. Stage Stage D1 Delete: (cow)boy -> cow D2Delete: (un)der > der Delete: (pine)apple -> apple E1E2Delete: (de)liver -> liver

Advanced Syllable Skills (first to second grade and older, struggling readers)*

E3	Delete: (tri)angle -> angle			
E4	Delete: (an)imal > imal			
E5	Delete: ele(phant) -> ele			

ONSET-RIME LEVEL PROCESSING (kindergarten to first grade and some older, struggling readers)*

Fl	Delete: (c)at -> at
F2	Delete: m(an) > m
G1	Substitute: (n)ot -> (h)ot
G2	Substitute: t(an) -> t(oy)

PHONEME LEVEL PROCESSING

Basic Phoneme Skills (first to early second grade and older, struggling readers)*

H1	Delete: (p)lane -> lane
H2	Substitute: (c)lass > (g)lass
I1	Delete: shee(p) -> she
I2	Delete: car(t) -> car

Advanced Phoneme Skills (early second to early third and older, struggling readers)*

J	Substitute: t(e)ll -> t(a)ll
K1	Delete: b(l)and > band
K2	Substitute: s(k)ill -> s(p)ill
LI	Substitute: pe(t) -> pe(n)
L2	Substitute: sen(t) -> sen(d)
M1	Delete: ha(n)d -> had
M2	Substitute: li(f)t -> li(s)t

SUMMARY AND CONCLUSIONS

Summary

- Word-level reading is primarily phonological
- This is based upon the alphabetic nature of our writing system
- Visual skills not a source of reading problems
- Skilled readers are all good at phonic decoding and orthographic mapping – neither is optional
 - Weaker readers are weak in both
 - Phonics skills are essential, but not enough
 - Skilled readers have large sight vocabularies, weak readers do not

Summary

- Fluency is a function of sight vocabulary size
 - And a few other smaller contributors
- For poor orthographic mappers, practice does not improve reading
- For skilled orthographic mappers, reading does not improve without practice
- Reading problems are very preventable
- The most highly effective word-reading intervention outcomes trained advanced phonemic awareness, letter-sound skills, and did reading practice
- There are tests on the market to assess the key component skills of reading